

Effekt av icke-invasiv ventilering vid akut andningsinsufficiens orsakad av coronavirus (2020), Upplysningstjänstsvar ut202021

Bilaga 1 Tabell över ingående studier

Study	Population	Intervention	Outcome	Results	Aims	Risk of bias
Year		and control			Conclusions	Limitations
Country Chudu design		treatments				
Study design						
Alraddadi et al	Patients diagnosed	I: NIV was	The primary	Mortality: OB 0.61, 95% CL 0.23 to	Aim: To assess the success of NIV in	Medium risk
2019	with MERS who	used as the initial	outcome was 90-	1.60 n=0.27	MERS nationts with AHRE in	of hias
Saudi Arabia	required ventilator	ventilatory mode	day mortality	Oxygen rescue therapies: NIV:	avoiding intubation and its	01 0103
Sadarrabla	support	in 105/302	adymortality	20%, MV 11.7%, p=0.05	association with mortality and ICU	Limitations in
Design:		(34.8%) patients	ICU and hospital	Time on ICU: NIV: 11 days, MV, 11	and hospital length of stay	the selection
Retrospective	Intervention: n=105,		length of stay	days, p=0,79		process. Lack
observational	Mean age=60 y,	C: Invasive MV as	were collected	Length of hospital stay: NIV: 22	Conclusion: We have shown that	of protocol.
study <u>with</u>	Gender	the initial		days, MV: 20 days, p=0.6	among patients with MERS-related	Retrospective
control	distribution=65.7%	ventilatory mode	Duration		AHRF, NIV was commonly used, but	design
intervention	male	in 197/302 (65%)	of non-invasive	There were no differences in	nearly always resulted in	
		patients	and invasive	mortality with NIV compared to	subsequent transition to invasive	
Setting: Tertiary	Control: n=197,		mechanical	MV in subgroups of patients with	ventilation. Our results suggest that	
care nospitais	Mean age=58y,		ventilation and	Pa02/FI02 ratio \$100 and \$100	while the initial NIV use in MERS	
	distribution-71 1%		days	$O_{\rm Plv} 8/105 (7.6\%) of the NUV$	reduction of mortality or length of	
	male		uays	natients avoided subsequent	ICII or hospital stay, these nations	
	marc		Use of oxygen	intubation. These patients were	had greater requirement for	
			rescue therapies	significantly younger than those	subsequent inhaled nitric oxide. A	
				who failed NIV and had much lower	minority of patients were	
				baseline SOFA score	successfully managed with NIV—	
					those who were young and had less	
				90-day mortality was significantly	severe disease	
				higher in patients who failed NIV		
				compared with patients		
				successfully treated only with NIV		
Yam et al	Patients between	Clustered analysis	Primary outcome	Compared to IMV Hospitals, NIV	Aim: Compare the outcomes of ARF	Medium risk
2005 Hong Kong	15-74 years old who	between	measures were	Hospital had lower adjusted	patients with SAKS supported	of blas
попу копу	developed acute	nospitais with NIV	need for		initially with NIV against those	

	rospiratory failuro	as initial	intubation and	adds ratios for intubation 0.26	treated cololy with invasivo	Upoqual
		as iillidi			lieated solely with invasive	Unequal
Design:	during hospitalization	treatment in	mortality.	95% Cl, 0.164 to 0.791, p=0.011	mechanical ventilation	distribution
Retrospective	for SARS	standard		and death 0.235, 95% Cl, 0.077 to		of excluded
register study		treatment	Secondary	0.716, p=0.011) and improved	Conclusion: compared to invasive	participants
with control	Intervention: n=42,	protocol and	outcomes for	earlier after pulsed steroid rescue	mechanical ventilation, early	between
group.	Mean age=47 y,	those who didn't	each group		application of non-invasive	groups
	Gender		included the time	There were no instances of	ventilation as initial support for	Limitations in
	distribution=45.2%	I: 42 patients	from specific	transmission of severe acute	SARS-related acute respiratory	the selection
	male	whereof 21	events (ARF,	respiratory syndrome among	failure appeared to be associated	process. Lack
		received NIV	pulsed steroid	health care workers due to the use	with significantly reduced need for	of protocol.
	Control: n=451,		rescue, peak	of non-invasive ventilation	intubation and mortality. under	Retrospective
	Mean age=44 y,	C: 451 patients	FiO2) to clinical		currently recommended infection	design.
	Gender	were 188	Improvement.		control conditions, noninvasive	
	distribution=49.7%	received IMV			ventilation did not result in any	
	male				SARScoronavirus transmission	
					among health care workers in our	
					study	

AHRF = Acute hypercapnic respiratory failure; ARF = Acute renal failure; C = control; CI = Confidence interval; FiO2 = Fraction of inspired oxygen; ICU = Intensive care unit; I = Intervention; MERS = Middle East Respiratory Syndrome; MV = Mechanical ventilation; NIV = Non-invasive ventilation; PaO2 = Partial pressure of oxygen in arterial blood; SARS = Severe acute respiratory syndrome; SOFA = The sequential organ failure assessment; y = Years

Effekt av icke-invasiv ventilering vid akut andningsinsufficiens orsakad av coronavirus (2020), Upplysningstjänstsvar ut202021

Bilaga 2 Exkluderade studier

Referens	Exklusionsorsak
Alraddadi BM, Qushmaq I, Al-Hameed FM, ourah Y, Almekhlafi GA, Jose J, et	Fel utfall: O
al. Noninvasive ventilation in critically ill patients with the Middle East	
respiratory syndrome. Influenza Other Respir Viruses 2019;13:382-90.	
Arabi YM, Balkhy H, Al-Omari A, Al-Hameed FM, Al-Aithan A, Abdulmomen A,	Konferensabstrakt
et al. Critically ill patients with the middle east respiratory coronavirus	
(MERS-CoV) infection. Am J Respir Crit Care Med 2015;191.	
Arabi YM, Fowler R, Hayden FG. Critical care management of adults with	Ingen systematisk
community-acquired severe respiratory viral infection. Intensive Care Med	översikt
2020;46:315-28.	
Branson RD, Johannigman JA, Daugherty EL, Rubinson L. Surge capacity	Ingen systematisk
mechanical ventilationincluding discussion with Sandrock CE, Branson RD,	översikt
Daugherty EL, Rubinson L, Ritz, Wilgis J, and Muskat PC. Respir Care	
2008;53:78-90.	
Cabrini L, Giovanni L, Zangrillo A. Minimise nosocomial spread of 2019-nCoV	Ingen systematisk
when treating acute respiratory failure. In. Lancet, Philadelphia,	översikt
Pennsylvania; 2020. p. 685.	
Chen H, Wang XP, Li F, Yang Q, Zhang LG, Du JX, et al. Evaluation of	Fel språk
noninvasive positive pressure ventilation in treatment for patients with	
severe acute respiratory syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue	
2003;15:585-8.	
Cheung TMT, Yam LYC, So LKY, Lau ACW, Poon E, Kong BMH, et al.	Fel studiedesign
Effectiveness of noninvasive positive pressure ventilation in the treatment of	
acute respiratory failure in severe acute respiratory syndrome. CHEST	
2004;126:845-50.	
Daugherty EL, Branson R, Rubinson L. Mass casualty respiratory failure. Curr	Ingen systematisk
Opin Crit Care 2007;13:51-6.	översikt
Davies A, Thomson G, Walker J, Bennett A. A review of the risks and disease	Ingen systematisk
transmission associated with aerosol generating medical procedures. J Infect	översikt
Prev 2009;10:122-6.	
Ferrer M, Torres A. Noninvasive ventilation for acute respiratory failure. Curr	Ingen systematisk
Opin Crit Care 2015;21:1-6.	översikt
Han F, Jiang YY, Zheng JH, Gao ZC, He QY. Noninvasive positive pressure	Fel utfall: O
ventilation treatment for acute respiratory failure in SARS. Sleep Breath	
2004;8:97-106.	
Han F, Jiang YY, Zheng JH, Hu Z, Gao ZC, He QY, et al. Acute respiratory failure	Fel språk
and noninvasive positive pressure ventilation treatment in patients with	
severe acute respiratory syndrome. Zhonghua Jie He He Hu Xi Za Zhi	
2004;27:593-7.	
Ho PL, Tang XP, Seto WH. SARS: Hospital infection control and admission	Fel studiedesign
strategies. Respirology 2003;8:S41-S45.	

Uni DC Hall CD, Chan MT, Chan DK, Taan IV, Jamet CM, et al. Manimuraina	Falmanulation D
Hui DS, Hall SD, Chan MT, Chow BK, Isou JY, Joynt GM, et al. Noninvasive	Fel population: P
positive-pressure ventilation: An experimental model to assess air and	
particle dispersion. Chest 2006;130:730-40.	
Hui DS. Severe acute respiratory syndrome (SARS): lessons learnt in Hong	ingen systematisk
Kong, J Thorac Dis 2013;5:5122-5126.	
Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol	ingen systematisk
Infect DIS 2005;24:583-91.	oversikt
Lau AC, Yam LY, So LK. Management of Critically III Patients with Severe Acute	ingen systematisk
Respiratory Syndrome (SARS). Int J Med Sci 2004;1:1-10.	oversikt
LI H, NIE L, Wang G, Que C, Ma J, LI N, et al. Clinical observation of non-	Fel sprak
Invasive positive pressure ventilation (NIPPV) in the treatment of severe	
2003;35.41-3.	
Lin L, Xu Y, He D, Han Y, Tang G, Yang Z, et al. A retrospective study on clinical	Fel utrall: O
Teatures of and treatment methods for 77 severe cases of SARS. Am J Chin	
Med 2003;31:821-39.	Γ al ann 81.
Liu CZ, Cheng GY, Wang RG, Liu Y. Dynamics changes of pulmonary lesions on	Fel sprak
CT in patients with severe acute respiratory syndrome treated by non-	
Invasive positive pressure ventilation. Zhonghua Fang She Xue Za Zhi	
2007;41:479-82.	F . I º I
Liu HY, Shi YM. Analysis of mortal risk factors in 12 patients with severe acute	Fel sprak
respiratory syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2003;15:526-8.	- I °I
Liu XQ, Chen SB, He GQ, Li YM, He WQ, Chen RC, et al. Management of	Fel språk
critical severe acute respiratory syndrome and risk factors for death.	
Zhonghua Jie He He Hu Xi Za Zhi 2003;26:329-33.	- · · ·
Lu W, Zhang H, Wang F, Wang S, Wu X, Zhang N, et al. Preliminary analysis of	Fel språk
treatment in 32 patients with critical severe acute respiratory syndrome.	
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2003;15:492-4.	- · · ·
Marraro G. Considerations on the treatment of Severe Acute Respiratory	Fel språk
Syndrome (SARS). Acta Anaesthesiologica Italica / Anaesthesia and Intensive	
Care in Italy 2003;54:136-47.	
Marraro GA. Severe Acute Respiratory Syndrome (SARS). Acta	Fel språk
Anaesthesiologica Italica / Anaesthesia and Intensive Care in Italy 2003;54:9-	
20.	
Meng L, Qiu H, Wan L, Ai Y, Xue Z, Guo Q, et al. Intubation and Ventilation	Fel studiedesign
amid the COVID-19 Outbreak: Wuhan's Experience. Anesthesiology	
2020;132:1317-32.	
Nava S, Schreiber A, Domenighetti G. Noninvasive ventilation for patients	Ingen systematisk
with acute lung injury or acute respiratory distress syndrome. Respir Care	översikt
2011;56:1583-8.	-
Nie L, Li H, Que C, Wang G, Ma J, Li N, et al. Clinical features and	Fel språk
management of recurrence of severe acute respiratory syndrome. Beijing Da	
Xue Xue Bao Yi Xue Ban 2003;35:553-5.	
Phua GC, Govert J. Mechanical ventilation in an airborne epidemic. Clin Chest	Ingen systematisk
Med 2008;29:323-8.	översikt
Qureshi A, Cornwell C. Effectiveness of Prone Ventilation in patients with	Fel intervention: I
Acute Respiratory Distress Syndrome: a systematic review. JBI Libr Syst Rev	
2012;10:1-12.	

Simonds A, Hanak A, Chatwin M, Morrell M, Hall A, Parker K, et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess 2010;14:131-72.	Fel utfall: O
Tran K, Cimon K, Severn M, Pessoa-Silva C, Conly J. Aerosol generating procedures (AGP) and risk of transmission of acute respiratory diseases (ARD): A systematic review. BMC Proc 2011;5.	Konferensabstrakt
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020;323:1061-9.	Fel studietyp
Verbeek JH, Rajamaki B, Ijaz S, Tikka C, Ruotsalainen JH, Edmond MB, et al. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Libr 2019.	Fel intervention: I
Winck JC, Gonçalves M. H1N1 infection and acute respiratory failure: Can we give non-invasive ventilation a chance? Rev Port Pneumol 2010;16:907-11.	Ingen systematisk översikt
Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020;49:0.	Fel språk
Xu YD, Jiang M, Chen RC, Fang JQ, Xiao ZL, Zhong NS. Retrospective discriminant analysis of the clinical diagnostic criteria for serious contagious severe acute respiratory syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2006;18:346-9.	Fel språk
Xu YD, Li YM, Liu XQ, Chen SB, He WQ, Xiao ZL, et al. Clinical therapy of severe acute respiratory syndrome: 38 cases retrospective analysis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2003;15:343-5.	Fel språk
Yam LYC, Chan AYF, Cheung TMT, Tsui ELH, Chan JCK, Wong VCW. Non- invasive versus invasive mechanical ventilation for respiratory failure in severe acute respiratory syndrome. Chin Med J (Engl) 2005;118:1413-21.	Fel utfall: O
Yam LYC, Chen RC, Zhong NS. SARS: Ventilatory and intensive care. Respirology 2003;8:S31-S35.	Ingen systematisk översikt
Yang L, Li F, Li D, Jia JG, Yang P, Sun JB. Clinical analysis of complications after non- invasive positive pressure ventilation and an inquiry into the respiratory treatment strategy in patients with SARS. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2004;16:281-3.	Fel språk
Zhao Z, Zhang F, Xu M, Huang K, Zhong W, Cai W, et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China J Med Microbiol 2003;52:715-20.	Fel intervention: I