Table 11.1 Studies of high or moderate quality used for results and conclusions
in the present report.

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Amendola et al 2011 [64] USA	Randomised block design where a pre-test measure served as covariate. Blocks included site and time of day of the shifts (8-, 10-and 12-hour shifts) Police departments in two cities 2007-2009	Eligible persons were in patrol operations divisions (assign to respond to calls for officers) and not working on foot patrol or restricted duty The majority of officers were 18-34 years old $\mathrm{n}=231(\mathrm{n}=69$ for 8 -hour shifts, $\mathrm{n}=81$ for 10 -hour shifts and $\mathrm{n}=81$ for 12 -hour shifts). The initial number of subjects was 275 326 volunteers enrolled to the study; 75 women, 251 men	Shift length Subjects were randomised to 8 -, 10- or 12-hour shifts. Site (Arlington or Detroit) and time of day (day, evening, and midnight) were used for statistical control	Sleep quality Sleep quality was assessed using a self-reported instrument developed within the project. Subjects kept a sleep diary rating sleep quality from very poor to very good Sleep apnea Sleep apnea was assessed using the Berlin Sleep Apnea Scale	Associated effect sizes measured by block randomised ANCOVA where pre-test served as the covariate (F (df)) Average sleep quality: $0.865(2,147)$, $\mathrm{p}=0.423$ Apnea: $0.208(2,224), p=0.812$ Effect size was presented as Cohen's f to measure the influence of the intervention, ie, length of shift Average sleep quality: 0.09 Apnea: 0.04	-	High

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Burgard et al 2009 [55] USA	Prospective cohort 3 years Working population 1986 and 1989	Participants were working at least 20 hours per week both 1986 and 1989, 25 years and older $\mathrm{n}=1101$ 458 women and 643 men	Job control Job control was assessed by interview using three items based on Karasek's measure of decision latitude Job insecurity Job insecurity was assessed by interview using two questions; one on being bothered/upset at work	Sleep quality Poor sleep quality was assessed by interview using a global item obtained from the Center for Epidemiologic Studies Depression Scale (CES-D)	Poor sleep quality in 1989 in relation to occupational factors. Logistic regression model adjusted for age, gender, race, civil status, children at home, educational level, household income, working hours/week, neuroticism score, self-rated health, obesity and sleep quality at baseline. OR ($95 \% \mathrm{CI}$) Low control: 1.01 ($0.935 ; 1.094)$ Low control (change 1986-1989): 1.05 (0.969; 1.133) Job insecurity: 1.11 (0.911 ; 1.341) Job insecurity (change 1986-1989): 1.04 ($0.879 ; 1.232$) Bothered/upset at work: Bothered/upset at work (change 1986-1989): -	This model also adds measures of feeling bothered/upset at work. OR (95\% CI) Low control: 0.99 (0.917; 1.077) Low control (change 1986-1989): 1.03 (0.952; 1.116) Job insecurity: 1.09 (0.895; 1.322) Job insecurity (change 1986-1989): 1.04 (0.873; 1.228) Bothered/upset at work: 1.35 (1.089; 1.676) Bothered/upset at work (change 1986-1989): 1.27 (1.067; 1.502)	Moderate The article also provides data on crosssectional associations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
$\begin{aligned} & \text { de Lange } \\ & \text { et al } \\ & 2009 \\ & {[50]} \end{aligned}$ The Netherlands	Prospective cohort 5 years Employees at 34 companies 1994, 1995, 1996, 1997	Companies not involved in major reorganisations. Employees working for at least 1 year, at least 20 hours per week, excluding those on temporary contract and receiving disability benefit Mean age 36 years $\mathrm{n}=1136$ 329 women and 807 men	lob demands Job demands were assessed using a 5 -item Dutch version of Karasek's Job Content Questionnaire Job control Job control was assessed using eight items reflecting skill discretion and decision authority	Sleep quality Sleep parameters were assessed using a self-administered questionnaire with a 3-item sleep scale	Correlation between factors and sleep quality at the last measurement (1997). Correlation of 0.06 and higher are significant, $\mathrm{p}<0.05$ Factors at first measurement (3 years lag) Job demands: 0.12 Job control: -0.06 Factors at second measurement (2 years lag) Job demands: 0.15 Job control: -0.07 Factors at third measurement (1 year lag) Job demands: 0.15 Job control: -0.11 Sleep quality at the first measurement (number of subjects). Mean (SE) Stable high strain group ($\mathrm{n}=61$): 0.72 (0.11) Stable low strain group ($n=108$): 0.25 (0.08) Stable active group ($\mathrm{n}=97$): 0.58 (0.11) Stable passive group ($n=93$): 0.45 (0.09) Change to high strain ($\mathrm{n}=84$): 0.48 (0.11) Change to no high strain ($\mathrm{n}=135$): 0.65 (0.11) Sleep quality at the last measurement (number of subjects). Mean (SE) Stable high strain group ($\mathrm{n}=61$): 1.13 (0.11) Stable low strain group ($\mathrm{n}=108$): 0.25 (0.09) Stable active group ($\mathrm{n}=97$): 0.79 (0.11) Stable passive group ($\mathrm{n}=93$): 0.54 (0.09) Change to high strain ($n=84$): 0.73 (0.12) Change to no high strain ($\mathrm{n}=135$): 0.72 (0.12)	Structural equation modelling was used to compare various competing models for the relationships among job demands, job control and sleep quality. MANOVA F-values Sleep quality was significantly affected by job demands and job control across a 1 -year time lag when investigating the effect of demand-control history in a fourwave panel study Models include temporal stabilities and effects of variables over time and controls for age, gender, level of education and years of experience Effect of time: $F(1,458)=1855\left(n^{2}: 0.04\right)$ Effect of group: $F(5,458)=6.72\left(\eta^{2}: 0.03\right)$ Effect of time x group: $F(5,458)=2.36\left(n^{2}: 0.07\right)$	Moderate The article also provides data on crosssectional correlations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Edmé et al 2011 [51] France	Prospective cohort 4 years Working population in a French region 1999-2000, 2004	Employees with permanent work contract working at the same workplace at the same company at baseline and at follow-up Most of the population between 31-50 years. Men worked frequently in industry and services, women in services $\mathrm{n}=1154$ 357 women and 797 men	Psychosocial factors Psychosocial factors were assessed by selfquestionnaire using Karasek's and Siegrist's questionnaires translated into French	Sleep Sleep parameters were assessed by using sleep disorder scales from Nottingham Health Profile (selfquestionnaire)	Relation between psychosocial factors and incidence of sleep problems between 1999 and 2004 adjusted for age, socioprofession and firm size. OR ($95 \% \mathrm{Cl}$) Women Decision latitude (low vs high): 0.88 (0.44; 1.75) Demand (high vs low): 1.08 (0.58; 2.04) Social support (low vs high): 0.97 (0.49; 1.94) Job strain: 0.68 (0.32; 1.46) Job iso-strain: 0.30 ($0.08 ; 1.03$) Reward (low vs high): 0.65 (0.33; 1.30) Effort-reward imbalance: 0.79 (0.37; 1.69) Men Decision latitude (low vs high): 1.18 (0.77; 1.80) Demand (high vs low): 2.20 (1.44; 3.35) Social support (low vs high): 1.13 (0.74; 1.73) Job strain: 1.89 (1.16; 3.06) Job iso-strain: 2.55 (1.41; 4.60) Reward (low vs high): 1.70 (1.12; 2.57) Effort-reward imbalance: 2.20 (1.43; 3.38)	Relation between psychosocial factors and incidence of sleep problems between 1999 and 2004 adjusted for age, socioprofession, firm size and health score at baseline. OR ($95 \% \mathrm{CI}$) Women Decision latitude (low vs high): 0.77 (0.38; 1.55) Demand (high vs low): 1.10 (0.57; 2.14) Social support (low vs high): 0.84 (0.40; 1.75) Job strain: 0.56 (0.25; 1.25) Job iso-strain: 0.26 (0.07; 0.93) Reward (low vs high): 0.54 (0.26; 1.12) Effort-reward imbalance: 0.70 (0.32; 1.53) Men Decision latitude (low vs high): 1.21 ($0.80 ; 1.86$) Demand (high vs low): 2.05 (1.33; 3.16) Social support (low vs high): 1.12 (0.73; 1.72) Job strain: 1.88 (1.15; 3.07) Job iso-strain: 2.40 (1.31; 4.41) Reward (low vs high): 1.60 (1.05; 2.44) Effort-reward imbalance: 2.02 (1.29; 3.15)	Moderate The article also provides data on crosssectional relations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Elovainio et al 2009 [57] United Kingdom	This cohort has been followed for 14 years	$\text { n=5 } 209$ 1446 women and 3763 men	Organisational justice A 5-item selfreport justice scale which tapped the relational component of organisational justice was used	Sleeping problems At Phase 2 sleeping problems in the past fortnight were assessed by two items from a longer symptom checklist	Association between organisational justice (mean of Phase 1 and 2) and sleeping problems at follow-ups, adjusted for age and baseline sleeping problems. Standardised regression coefficients beta	Association between organisational justice and sleeping problems, adjusted for age, baseline sleeping problems, employment grade, health behaviours, depressive symptoms and job strain. Standardised regression coefficients beta	Moderate
	Civil servants	and 3763 men			Women Overall sleeping problems		
	Seven phases (1985-2004)				beta: $-0.10, \mathrm{t}$: $-4.07, \mathrm{p}<0.001$	Overall sleeping problems beta: $-0.06, \mathrm{t}:-2.15, \mathrm{p}=0.032$	
			Job strain The components of job strain were assessed by using the Job Strain Questionnaire	At Phase 5 and 7 sleeping problems in the past month were assessed by using the 4-item Jenkins Scale	Sleep onset problems beta: $-0.005, \mathrm{t}:-1.94, \mathrm{p}=0.053$	Sleep onset problems beta: $-0.03, \mathrm{t}:-1.21, \mathrm{p}=0.227$	
					Sleep maintenance problems beta: $-0.09, \mathrm{t}:-3.39, \mathrm{p}<0.001$	Sleep maintenance problems beta: $-0.05, \mathrm{t}:-1.87, \mathrm{p}=0.061$	
					Non refreshing sleep beta: $-0.12, \mathrm{t}$: $-4.72, \mathrm{p}<0.001$	Non refreshing sleep beta: $-0.06, \mathrm{t}$: $-2.15, \mathrm{p}=0.032$	
					Men		
					Overall sleeping problems beta: $-0.11, \mathrm{t}:-6.69, \mathrm{p}<0.001$	Men Overall sleeping problems beta: $-0.06, \mathrm{t}$: $-3.93, \mathrm{p}<0.001$	
					Sleep onset problems beta: $-0.07, \mathrm{t}:-4.29, \mathrm{p}=-0.08$	Sleep onset problems beta: $-0.04, \mathrm{t}:-2.66, \mathrm{p}=0.008$	
					Sleep maintenance problems beta: $-0.08, \mathrm{t}:-5.26, \mathrm{p}<0.001$	Sleep maintenance problems beta: $-0.05, t:-3.01, p=0.003$	
					Non refreshing sleep beta: $-0.11, \mathrm{t}$: $-6.93, \mathrm{p}<0.001$	Non refreshing sleep beta: -0.07, t : $-4.10, \mathrm{p}<0.001$	
					Overall sleeping problems score at follow-up by baseline characteristics. Adjusted mean ($95 \% \mathrm{Cl}$)		
					Women		
					Job strain - yes: 11.8 (11.3; 12.3)		
					Job strain - no: 11.3 (10.9; 11.6)		
					Men		
					Job strain - yes: 11.1 (10.8; 11.4)		
					Job strain - no: 10.5 (10.3; 10.7) p for difference: <0.001		

Table 11.1 continued

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Eriksen et al 2008 [52] Norway					Fairness of immediate superior (Level $1=1$) 2: 1.02 ($0.74 ; 1.41$) 3: $1.14(0.87 ; 1.48)$ 4: 1.01 (0.70; 1.44) 5: 1.25 ($0.90 ; 1.73$) Support from immediate superior (Level $1=1$) 2: $0.90(0.68 ; 1.20)$ 3: $1.10(0.77 ; 1.56)$ 4: 0.71 ($0.50 ; 1.01$) 5: 0.67 ($0.46 ; 1.00$) Rewards for well-done work Not at all or very little: 1 Rather little: 0.85 (0.67 ; 1.08) Some: 0.90 (0.72; 1.14) Rather much: $0.74(0.54 ; 1.00)$ Very much: $0.75(0.41 ; 1.36)$ Exposure to threats and violence at work Never or very seldom: 1 Rather seldom: $0.87(0.68 ; 1.13)$ Sometimes: $1.08(0.86 ; 1.37)$ Rather often: 1.77 (1.27; 2.46) Very often or always: $1.60(0.86 ; 2.98)$ Exposure to bullying at work ($\mathrm{No}=1$) Yes: 0.65 (0.43; 0.98)		

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
$\begin{aligned} & \text { Greenberg } \\ & 2006 \\ & \text { [61] } \\ & \text { USA } \end{aligned}$	Interrupted time series with a nonequivalent no-treatment control group series 6 months Nurses No information on exact years for measurements	Non-unionised nurses who worked on the same shift for at least 49 consecutive weeks at one of four private hospitals $\mathrm{n}=467$ in the final sample (625 at baseline) 412 women and 55 men	Underpayment inequity (interactional justice) The pay was reduced for some nurses, while it was unchanged for others Self-questionnaires developed within the projects were used to rate pay fairness For some groups in the experimental design, nursing supervisors received training in promoting interactional justice	Insomnia Insomnia was assessed using a variation of the Jenkins Scale (selfquestionnaire)	Dependent variables were analysed using 2×2 (between) $\times 4$ (within) mixeddesign univariate analyses of variance Self-reports of insomnia interacted with training x pay \times time interaction: $F(3,1386)=9.99, p<0.01$ Underpaid nurses experienced greater insomnia than those whose pay was unchanged: $F(2,1398)=1.317, p<0.01$ Insomnia among employees with different wages (mean, SD) Underpaid employees: 5.07 (1.34) Unchanged pay: 2.70 (1.10) The degree of insomnia was significantly lower among nurses whose supervisors were trained in interactional justice, both immediately after training and 6 months later	-	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Hanson et al 2011 [53] Sweden	Prospective cohort/ two-wave panel 2 years (2 measurements) Working population $2003,2006,$ 2008	Gainfully employed members of the working population Mean age 47 years $\mathrm{n}=3041$ at second measurement 1599 women and 1442 men at second measurement	Psychosocial factors Demand, control and support were assessed by using the Swedish version of the Demand-Control Questionnaire Work hours were assessed with a modified question from the Swedish Work Environment Survey	Sleep disturbance, awakening problems Sleep parameters were assessed by using ques- tions from the Karolinska Sleep Questionnaire	Association between factors and sleep parameters. Standardised regression coefficients adjusted for gender, age, marital status, education, alcohol consumption and job change Disturbed sleep at second measurement Demands at first measurement: 0.03 Decision authority at first measurement: - 0.01 Support at first measurement: - 0.03 Awakening problems at second measurement Demands at first measurement: 0.02 Decision authority at first measurement: $-0.04, \mathrm{p}<0.05$ Support at first measurement: -0.04 , p<0.05	Association between factors and sleep parameters. Model fit and comparison for structural equation models; analyses controlled for gender, age, marital status, education, alcohol consumption and job change Disturbed sleep Model fit - forward model Demands: df: 217, $x^{2}: 1255.33$ Decision authority: df: 103, x^{2} : 400.69 Support: df: 263, $x^{2}: 1297.11$ Comparison - forward model vs null modell Demands: df: 217, $\Delta x^{2}: 4.83, p<0.05$ Decision authority: df: 103, $\Delta x^{2}: 1.08$ Support: df: 263, $\Delta x^{2}: 3.05$ Awakening problems Model fit - forward model Demands: df: 175, $\mathrm{x}^{2}: 1140.00$ Decision authority: df: 73, $x^{2}: 259.85$ Support: df: 217, $\mathrm{x}^{2}: 1130.69$ Comparison - forward model vs null modell Demands: df: 175, Δx^{2} : 2.1 Decision authority: df: 73, $\Delta x^{2}: 4.78$, p<0.05 Support: df: 217, $\Delta x^{2}: 4.45, p<0.05$	Moderate The article also provides data on crosssectional associations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Heiskel et al 2002 [70] Germany	Case-referent 1997-1998	Cases with apnea were compared to reference groups, $\mathrm{n}=946$ (443 cases and 503 controls) Cases All male patients referred to selected sleep laboratories during a 1-year recruitment period who were diagnosed with obstructive sleep apnea. Mean age 54.8 years $n=443$ Population based reference group Random sample of the population in the geographical area of the sleep laboratories. Mean age 54.2 years $\mathrm{n}=397$ Sleep laboratory reference group All male patients referred to selected sleep laboratories during a 1 -year recruitment period with no pathological findings. Mean age 49.8 years $\mathrm{n}=106$	Chemical substances Exposure to gasoline, diesel fuel, paints and solvents were assessed by questionnaires	Obstructive sleep apnea Obstructive sleep apnea was diagnosed by polysomnography	Exposure of reference groups vs cases. Adjusted for age, BMI, smoking, alcohol intake and region. OR ($95 \% \mathrm{CI}$) Gasoline (none in reference group $=1$) Population based reference group vs cases Low: 1.1 (0.6; 1.8) Medium: $0.9(0.6 ; 1.6)$ High: 0.6 (0.3; 1.2) Laboratory reference group vs cases Low: 0.7 (0.4; 1.4) Medium: 0.9 ($0.4 ; 1.9$) High: $0.2(0.1 ; 0.5)$ Diesel fuel (none in reference group $=1$) Population based reference group vs cases Low: 0.8 (0.4; 1.5) Medium: 1.2 (0.7; 2.2) High: 1.0 (0.5; 2.2) Laboratory reference group vs cases Low: 1.0 (0.4; 2.5) Medium: $1.4(0.6 ; 3.3)$ High: 0.5 (0.2; 1.0) Paints (none in reference group $=1$) Population based reference group vs cases Low: 0.8 (0.5; 1.2) Medium: $1.0(0.5 ; 1.7)$ High: 1.0 (0.4; 2.2) Laboratory reference group vs cases Low: 0.6 (0.3; 1.1) Medium: 0.9 (0.4; 2.0) High: 0.5 (0.2; 1.5) Solvents (none in reference group $=1$) Population based reference group vs cases Low: 1.2 (0.8; 1.9) Medium: 1.1 (0.6; 1.9) High: 0.8 ($0.4 ; 1.6$) Laboratory reference group vs cases Low: $1.0(0.5 ; 1.9)$ Medium: $0.8(0.4 ; 1.6)$ High: $0.8(0.3 ; 1.8)$	Obstructive sleep apnea by cumulative exposure to solvents as assessed with a job exposure matrix. Adjusted for age, BMI, smoking, alcohol intake and region. OR (95\% CI) Population based reference group vs cases None: 1 s197 ppm-years: 0.9 (0.3; 2.9) >197 ppm-years: 0.5 ($0.2 ; 1.5$) Laboratory reference group vs cases None: 1 ≤ 197 ppm-years: 3.1 ($0.4 ; 27.4$) >197 ppm-years: -	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Jansson et al 2006 [54] Sweden	Prospective cohort 1 year General population No information on exact years for measurements	Participants were employed at baseline Age 20-60 years (mean 43 years) $\mathrm{n}=1530$ 765 women and 765 men at baseline	Psychosocial factors Psychosocial work stressors were assessed using a 43-item self-questionnaire based on an instrument developed by Haynes et al	Insomnia Insomnia was assessed using a self-questionnaire. Items concerning sleep were taken from the Nordic Sleep Questionnaire	Correlation between factors and insomnia. Stepwise logistic regression with the following predictor variables: age, gender, civil status, educational status, irregular work hours and work characteristics. OR $(95 \% \mathrm{Cl})$ No insomnia at baseline to future insomnia Irregular work hours: ns Autonomy and control: ns Influence over decisions: ns Professional compromise: ns Role conflict: ns Work demands: 1.38 (1.11; 1.71) Peer support: ns Leader support: ns Role clarity: ns Feedback: ns Insomnia at baseline to future insomnia Irregular work hours: ns Autonomy and control: ns Influence over decisions: ns Professional compromise: ns Role conflict: ns Work demands: ns Peer support: ns Leader support: 0.69 ($0.51 ; 0.94$) Role clarity: ns Feedback: ns Maintained insomnia Irregular work hours: ns Autonomy and control: ns Influence over decisions: 1.30 (1.05; 1.62) Professional compromise: ns Role conflict: ns Work demands: 1.27 (1.02; 1.58) Peer support: ns Leader support: ns Role clarity: ns Feedback: ns	-	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Karlson et al 2009 [65] Sweden	Prospective study of change of shift schedule 1 year and 3 months Employees at manufacturing plant No information on exact years for measurements	Day-time and shift workers Mean age 46 years $\mathrm{n}=283$ at baseline and 185 at follow-up (118 shift workers and 67 day-time workers at follow-up) 31 women and 154 men at follow-up	Psychosocial factors Psychosocial workload was assessed using a self-questionnaire based on Karasek's Job Content Questionnaire	Awakening problems, sleep disturbance Sleep parameters were assessed using a self-questionnaire based on the Karolinska Sleep Questionnaire (KSQ)	Sleep disturbance measured before (T1) and after (T2) a change of shift. Mean difference, $95 \% \mathrm{Cl}$ ${ }^{\text {a }}$: Age included as covariate ${ }^{\text {b }}$: Gender included as covariate Shift workers KSQ awakening problems ${ }^{\text {ab }}$: $-0.30(-0.43 ;-0.17)$ KSQ sleep disturbance ${ }^{\text {b }}$ $-0.21(-0.33 ;-0.10)$ Day-time workers KSQ awakening problems ${ }^{\text {ab }}$: 0.01 ($-0.17 ; 0.18$) KSQ sleep disturbance ${ }^{\text {b }}$ 0.02 (-0.13; 0.18) The magnitude of change from T1 to T2, computed as the mean difference between groups from T1 to T2, divided by the average standard deviation of the two points within each group (reported as Cohen's d). For awakening problems age and gender were included as covariates, and for sleep disturbance gender was included as a covariate Shift workers (before/after shift change) Awakening problems: 0.33, p <0.001 Sleep disturbance: $0.36, p<0.001$ Day-time workers Awakening problems: $0.01, \mathrm{p}=0.942$ Sleep disturbance: $0.06, p=0.583$ Interaction time x group Awakening problems: $\mathrm{p}=0.006$ Sleep disturbance: $0.06, p=0.001$	-	High The article also provides data on crosssectional correlations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Lallukka et al 2011 [62] Finland	Prospective cohort 5-7 years Civil servants 2000-2002, 2007	Employees of the City of Helsinki Age described in a separate publication $\mathrm{n}=6646$ (sum of reported women and men) 5399 women and 1247 men The author reports 8960 subjects at baseline and 7332 at follow-up	Work place bullying Bullying was assessed by two questions in a mailed survey	Sleep problems Sleep problems were assessed using the Jenkins Sleep Questionnaire, which was mailed to the participants	Bullying at baseline and subsequent sleep problems. OR $(95 \% \mathrm{CI})$ adjusted for age Women (no bullying = 1) Reported earlier bullying: 1.47 (1.26; 1.72) Reported current bullying: 1.69 (1.30; 2.20) Observed bullying - sometimes: 1.13 (0.99; 1.30) Observed bullying - frequent: 2.00 (1.61; 2.48) Men (no bullying = 1) Reported earlier bullying: 1.58 (1.06; 2.36) Reported current bullying: 3.17 (1.85; 5.43) Observed bullying - sometimes: 1.15 (0.85; 1.56) Observed bullying - frequent: 2.04 (1.23; 3.39) Bullying at baseline and subsequent sleep problems. OR $(95 \% \mathrm{Cl})$ adjusted for age and baseline sleep problems Women (no bullying = 1) Reported earlier bullying: 1.30 (1.10; 1.53) Reported current bullying: 1.25 (0.94; 1.66) Observed bullying - sometimes: 1.04 (0.90; 1.21) Observed bullying - frequent: 1.55 (1.23; 1.96) Men (no bullying = 1) Reported earlier bullying: 1.40 (0.91; 2.18) Reported current bullying: 2.60 (1.43; 4.72) Observed bullying - sometimes: 1.04 (0.75; 1.44) Observed bullying - frequent: 1.51 (0.87; 2.65)	Bullying at baseline and subsequent sleep problems. OR ($95 \% \mathrm{Cl}$) also adjusted for childhood bullying, education, working conditions, obesity, illness, baseline sleep problems Women (no bullying = 1) Reported earlier bullying: 1.14 (0.96; 1.36) Reported current bullying: 0.99 (0.74; 1.33) Observed bullying - sometimes: 0.94 (0.81; 1.10) Observed bullying - frequent: 1.23 (0.96; 1.56) Men (no bullying $=1$) Reported earlier bullying: 1.20 (0.76; 1.91) Reported current bullying: 1.81 (0.94; 3.48) Observed bullying - sometimes: 0.94 (0.66; 1.32) Observed bullying - frequent: 1.05 (0.57; 1.94)	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
$\begin{aligned} & \text { Linton } \\ & 2004 \\ & {[60]} \end{aligned}$	Prospective cohort	Participants were gainfully employed and had	Psychosocial factors Work	Sleep problems Sleep problems were assessed	Logistic regression analyses (OR, $95 \% \mathrm{Cl}$) for developing a new episode of sleeping problems.	-	Moderate
Sweden	1 year	no self-reported sleeping problems	factors were assessed with	with a questionnaire	Adjusted for age and gender		
	Residents from three	at the initial assessment	a questionnaire	Items concerning	Work hours Irregular work hours:		
	counties in		Stress at work	sleep were taken	1.02 (0.60; 1.72)		
	middle Sweden	Age 20-60 years	was assessed with a 10 -item	from the Basic Nordic Sleep	Night work: $1.34(0.55 ; 3.29)$		
	No information on exact years for measure-	$\mathrm{n}=816$ 384 women	standardised form based on assessment	Questionnaire and the Uppsala Sleep Inventory	Shift work: $1.21(0.53 ; 2.72)$		
	ments	and 432 men	of psycho-	(Broman et al,	Psychosocial work environment		
			social work	1996, Liljenberg	Psychosocial work index:		
			environment	et al, 1988)	2.15 (1.40; 3.29)		
			(Hane et al,		Work content:		
			1984, Linton		1.49 (0.96; 2.33)		
			et al, 1989)		Work load:		
			and the demand-		1.42 (0.93; 2.17)		
			control-support		Social support at work:		
			model by		1.64 (1.06; 2.54)		
			Karasek et al				

Table 11.1 continued

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Ota et al 2009 [58] Japan	Prospective cohort 2 years Electrical products companies 2003 and 2005	Participants were 39 years or older and had no work limitations due to health conditions at baseline $\mathrm{n}=1022$ 151 women and 871 men	Psychosocial factors Assessed by means of a self-reported Japanese version of the Job Content Questionnaire	Insomnia Insomnia was assessed by means of a self-reported questionnaire based on nonorganic definitions of insomnia in ICD-10 and DSM-IV	Risk with regard to insomnia at the follow-up. OR ($95 \% \mathrm{CI}$) adjusted for gender and age Insomniacs at baseline ($n=292$) Not high strain: 1 High strain: $1.27(0.75 ; 2.16)$ High social support: 1 Low social support: 1.70 (1.04; 2.72) Effort-reward imbalance - absent: 1 Effort-reward imbalance - present: 2.18 (1.08; 4.40) Not insomniacs at baseline ($n=730$) Not high strain: 1 High strain: 1.53 (0.97; 2.43) High social support: 1 Low social support: 0.92 ($0.61 ; 1.37$) Effort-reward imbalance - absent: 1 Effort-reward imbalance - present: 1.28 (0.61; 2.67)	Risk with regard to insomnia at the follow-up. OR ($95 \% \mathrm{Cl}$) also adjusted for illness being treated, occupational conditions (managing position, shift-working, overtime work), frequent drinking and smoking Insomniacs at baseline ($n=292$) Not high strain: 1 High strain: $1.32(0.75 ; 2.34)$ High social support: 1 Low social support: 2.00 (1.18; 3.40) Effort-reward imbalance - absent: 1 Effort-reward imbalance - present: 1.39 (0.83; 2.34) Not insomniacs at baseline $(n=730)$ Not high strain: 1 High strain: 1.72 (1.06; 2.79) High social support: 1 Low social support: $0.95(0.63 ; 1.45)$ Effort-reward imbalance - absent: 1 Effort-reward imbalance - present: 1.38 (0.65; 2.94)	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Pereira et al 2012 [63] Switzerland	Observation study 2 weeks Swiss organisations No information on exact years for measurements	Subjects employed in organisations constructed of teams of supervisors and colleagues. None had night shifts during the study period Mean age 34 years $n=90$ 57 women and 33 men	Social exclusion Social exclusion was assessed with a selfquestionnaire based on a 7-item scale by Leary et al, 1995	Several sleep outcomes Subjective sleep quality was assessed with a self-questionnaire (single item) based on Buysse, 1988 Sleep actigraphy was assessed by Body Media's Sensewear Armband	Estimates for predicting sleep parameters. The model was group-mean centred, ie, within-persons relationships between social exclusion and sleep parameters. Correlation coefficient (SE) Sleep fragmentation: 0.23 (0.12), p<0.05 Sleep onset latency: 0.30 (2.41) Sleep efficiency: -0.31 (1.52) Self-reported sleep quality: 0.04 (0.15)	-	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Postuma et al 2012 [71] Several countries	Case-control General population Time for measurements not specified	Cases were patients with idopatic REM sleep behaviour disorder. Controls were matched 1:1 on age and gender. The controls were patients referred to sleep centres for other sleep problems and normal volunteers. Recruitment procedures ensured that no more than 35% of controls could have any single sleep disorder Mean age was 67.7 years (cases) and 66.0 years (controls) $\mathrm{n}=694$ patients and 347 controls) 148 women (66 cases, 82 controls) and 546 men (281 cases, 265 controls)	Occupational pesticide use Pesticide exposure was assessed by selfquestionnaire developed by the authors	Idopatic REM sleep behaviour disorder Disease was confirmed with polysomnography	REM sleep behaviour disorder among pesticide users compared to non-users. OR $(95 \% \mathrm{CI})$ adjusted for age, gender and centre Pesticide, regular occupational use: $2.23(1.24 ; 4.01)$ Herbicide, occupational use: $2.54(1.05 ; 6.16)$ Insecticide, occupational use: $3.67 \text { (1.42; 9.30) }$	-	Moderate Included countries: Canada, Spain, Italy, France, Japan, Germany, USA, Denmark and Czech Republic

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Rosa et al 1996 [69] Finland	Prospective cohort, including an intervention. Shift schedule was changed at one of two factory sites Baseline testing 4-6 months before change in shift schedule. Follow-up testing occurred after a 4-month trial period Steel rolling mill Time for measurements not specified	Participants were workers at one of two factory sites The site where the shift was changed (S1) had 36 younger (<40 years) and 32 older (>40 years) workers. The control site (S2) had 47 younger and 93 older workers $\mathrm{n}=208$ (68 at site where the shift was changed and 140 at control site) 18 women and 190 men	Work schedule change At both sites a rotating three shift was used. During the new schedule, all start and end times at S1 were delayed by one hour	Two sleep outcomes Sleep parameters were assessed by self-administered questionnaires based on the standard shiftwork index by Folkard et al	Ratings of sleep quality before and after change. Mean (SD). Significances in change calculated by Newman-Keuls test Quality of sleep Morning S1 - before/after: 2.98 (0.92)/3.09 (0.74) S2 - initial/final: 3.12 (1.07)/3.07 (1.01) Evening S1 - before/after: 3.68 (0.71)/3.39 (0.88), p <0.05 S2 - initial/final: $3.62(0.78) / 3.54(0.79)$ Night S1 - before/after: 2.89 (0.98)/2.63 (1.01), p<0.05 S2 - initial/final: 2.85 (1.09)/2.80 (0.98) Free day S1 - before/after: 3.86 (0.67)/3.84 (0.73) S2 - initial/final: 3.85 (0.80)/3.81 (0.74) Awaken refreshed from sleep Morning S1 - before/after: 2.65 (1.06)/3.15 (0.78), P<0.05 S2 - initial/final: 3.00 (0.97)/2.95 (0.96) Evening S1 - before/after: 3.89 (0.69)/3.60 (0.78), p <0.05 S2 - initial/final: 3.66 (0.73)/3.61 (0.81) Night S1 - before/after: 2.80 (0.99)/2.51 (0.96), p<0.05 S2 - initial/final: 2.79 (1.06)/2.70 (1.00) Free day S1 - before/after: 4.16 (0.71)/4.07 (0.60) S2 - initial/final: 3.93 (0.79)/3.93 (0.76)	Interaction of test phase with shift. ANOVA F-values Quality of sleep $\begin{aligned} & \mathrm{S} 1: 3.42, \mathrm{p}=0.02 \\ & \mathrm{~S} 2:<1, \mathrm{~ns} \end{aligned}$ Awaken refreshed from sleep $\mathrm{S} 1: 10.92, \mathrm{p}=0.001$ $\text { S2: } 1.05 \text {, ns }$	Moderate The article also provides data on sleep quantity (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Rugulies et al 2009 [59] Denmark	Prospective cohort 5 years Working general population 2000 and 2005	Employed, working >20 hours per week, younger than 60 years, free of sleep disturbance at baseline $\mathrm{n}=2351$ free of sleep disturbance at baseline 1154 women and 1197 men (total: 2614 at baseline; 1318 women, 1296 men)	Effort-reward imbalance Effort-reward imbalance (ERI) was assessed with questions developed by the research team Data at baseline were collected by telephone interview. Data at follow-up were collected by telephone interview and self-administered questionnaires	Sleep disturbance Sleep disturbance was assessed with two questions developed by the research team Data at baseline were collected by telephone interview. Data at follow-up were collected by telephone interview and self-administered questionnaires	Prospective associations: ERI at baseline and incident sleep disturbance at follow-up. Reference: low ERI. OR ($95 \% \mathrm{CI}$) adjusted for survey method, age, occupational grade, married/ cohabitating, age of youngest child Women Medium-low ERI: 1.31 ($0.86 ; 1.99$) Medium-high ERI: 0.81 (0.50 ; 1.31) High ERI: 1.07 ($0.66 ; 1.73$) ERI ratio continuous: 1.00 (0.79 ; 1.28) Men Medium-low ERI: 1.43 (0.80; 2.55) Medium-high ERI: 1.23 ($0.68 ; 2.22$) High ERI: 2.02 (1.15; 3.55) ERI ratio continuous: 1.36 (1.03; 1.81) Prospective associations: continuous ERI at baseline - continuous sleep disturbance at follow-up. Linear regression (same adjustment) Women 0.59 (SE 0.30), p=0.05 Men 0.10 (SE 0.29), $\mathrm{p}=0.73$	Prospective associations between ERI at baseline and incident sleep disturbance at follow-up. Reference: low ERI. OR ($95 \% \mathrm{CI}$) also adjusted for smoking, alcohol consumption, physical activity, BMI, self-rated health, sickness absence days, weekly working hours, work time arrangement Women Medium-low ERI: 1.33 (0.86; 2.06) Medium-high ERI: 0.87 (0.53 ; 1.43) High ERI: 0.98 ($0.59 ; 1.63$) ERI ratio continuous: 0.97 ($0.76 ; 1.24$) Men Medium-low ERI: 1.44 (0.80; 2.61) Medium-high ERI: 1.34 (0.73 ; 2.47) High ERI: 2.06 (1.14; 3.74) ERI ratio continuous: 1.39 (1.03; 1.87) Prospective associations between continuous ERI at baseline and continuous sleep disturbance at follow-up. Linear regression analysis also adjusted for smoking, alcohol consumption, physical activity, BMI, self-rated health, sickness absence days, weekly working hours, work time arrangement Women 0.59 (SE 0.30), $p=0.05$ Men -0.07 (SE 0.29), $\mathrm{p}=0.80$	Moderate The article also provides data on cross-sectional associations (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Takahashi et al 2012 [56] Japan	Prospective cohort 1 year Workers 2007-2009	Subjects were randomly selected from a market research panel according to gender, age and industry. Age 20-59 years (mean 40.6 at baseline). They were managers, professionals, clerical-, salesor transportation workers $n=2382$ 829 women and 1553 men	Psychosocial factors Occupational factors were assessed by using a selfquestionnaire developed within the project	Insomnia, incomplete recovery Sleep parameters were assessed by using a selfquestionnaire developed within the project	Correlation between occupational factor at baseline and sleep parameter at follow-up Insomnia Work time control: - 0.10 Quantitative job overload: 0.12 Job control: -0.09 Social support at work: -0.11 Incomplete recovery Work time control: - 0.15 Quantitative job overload: 0.24 Job control: -0.15 Social support at work: -0.10	Changes in work time control to predict outcome variables were assessed by a repeatedmeasures analysis of covariance to test the main effects of group and measurement time. Covariates included gender, age, occupation, weekly work hours and psychosocial work characteristics at baseline Insomnia symptoms: $F(3,2261)=4.81, p=0.002$	Moderate

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Virtanen et al 2009 [32] United Kingdom	Prospective cohort 5 years	Full time office staff, 35-55 years, free of sleep disturbance at baseline	Weekly working hours Working hours were assessed by using a selfquestionnaire with items developed within the project	Several sleep outcomes Sleep parameters were assessed by using the Jenkins Scale	Incidence of sleep problems. OR ($95 \% \mathrm{Cl}$) adjusted for age, gender, marital status, occupation grade and education	Incidence of sleep problems. OR ($95 \% \mathrm{Cl}$) also adjusted for illness, exercise, BMI, smoking, alcohol and job demands	High The article also provides data on
	Civil servants 1991-1994, 1997-1999, 2002-2004	$\mathrm{n}=886-1510$ depending on time of measurement and outcome. The total number of subjects was 2470 at baseline			$\frac{\text { Difficulty in falling asleep }}{1 \text { st }}$	$\frac{\text { Difficulty in falling asleep }}{1 \text { st }}$	short sleep
					1st follow-up	1 st follow-up	and cross-
					41-55 hours/week: 1.58 (0.88; 2.82)	41-55 hours/week: 1.69 (0.92; 3.08)	sectional
					>55 hours/week: 3.68 (1.58; 8.58)	>55 hours/week: 4.12 (1.71; 9.94)	odds ratios (not included
					2nd follow-up	2nd follow-up	in the pres-
					41-55 hours/week: 1.63 (0.88; 3.00)	41-55 hours/week: 1.72 (0.91; 3.25)	ent report)
					>55 hours/week: 6.66 (2.64; 16.83)	>55 hours/week: 7.94 (2.97; 21.25)	
					Frequent waking	Frequent waking	
		598 women and 1872 men at baseline			1st follow-up	1st follow-up	
					41-55 hours/week: 0.94 (0.69; 1.27)	$41-55$ hours/week: 0.87 (0.63; 1.20)	
					>55 hours/week: 0.86 ($0.50 ; 1.56$)	>55 hours/week: 0.77 ($0.45 ; 1.33$)	
					2nd follow-up	2nd follow-up	
					41-55 hours/week: 1.08 (0.78; 1.49)	41-55 hours/week: 0.99 (0.71; 1.39)	
					>55 hours/week: 1.17 ($0.60 ; 2.25$)	>55 hours/week: 1.04 (0.53; 2.03)	
					Early waking	Early waking	
					1st follow-up	1st follow-up	
					41-55 hours/week: 1.04 (0.73 ; 1.46) >55 hours/week: 1.58 (0.91; 2.73)	41-55 hours/week: 1.01 ($0.70 ; 1.45$) >55 hours/week: 1.44 ($0.81 ; 2.54$)	
					2nd follow-up	2nd follow-up	
					41-55 hours/week: 1.26 (0.87; 1.82)	41-55 hours/week: 1.22 (0.83; 1.89)	
					>55 hours/week: 2.23 (1.16; 4.31)	>55 hours/week: 2.03 (1.03; 4.02)	
					Waking without feeling refreshed	Waking without feeling refreshed	
					1st follow-up	1st follow-up	
					41-55 hours/week: 1.14 (0.76; 1.72)	${ }^{41-55}$ hours/week: 1.09 (0.72; 1.67)	
					>55 hours/week: 1.98 (1.04; 3.77)	>55 hours/week: 1.82 (0.93; 3.54)	
					2nd follow-up	2nd follow-up	
					41-55 hours/week: 1.48 (0.96; 2.28)	41-55 hours/week: 1.41 (0.90; 2.21)	
					>55 hours/week: 1.85 (0.79 ; 4.39)	>55 hours/week: 1.71 ($0.71 ; 4.09$)	

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Åkerstedt et al 2001 [67] Sweden	Prospective cohort, including an intervention (reduced weekly work time) 2 years Health and day care personnel Time for measurements not specified	Mean age 39 years $\mathrm{n}=63$ (41 in experimental group and 22 in control group) 53 women and 10 men at follow-up	Reduced working time Reduced working time from 39 to 30 hours per week	Several sleep outcomes Sleep parameters were assessed by using a selfadministered questionnaire with a 5 -item scale (1-5 p) developed by the authors	Sleep disturbance before and after reduced working time. Mean (SEM)" Experimental group Before reduction Insomnia complaints: 3.81 (0.13) Sleep quality: 3.85 (0.15) Difficulty awakening: 3.80 (0.16) Refreshed at awakening: 3.23 (0.17) After reduction Insomnia complaints: 4.19 (0.11) Sleep quality: 4.22 (0.14) Difficulty awakening: 4.08 (0.15) Refreshed at awakening: 3.74 (0.16) Control group Before reduction Insomnia complaints: 3.71 (0.18) Sleep quality: 3.82 (0.23) Difficulty awakening: 3.82 (0.27) Refreshed at awakening: 2.91 (0.26) After reduction Insomnia complaints: 3.90 (0.16) Sleep quality: 3.64 (0.20) Difficulty awakening: 3.86 (0.22) Refreshed at awakening: 3.52 (0.21)	Interaction between experimental and control groups over time. Two-way repeated measured ANOVA F-values Insomnia complaints Between groups: 1.1 Over time: 15.4 (0.1% significance) Interaction: 1.7 Sleep quality Between groups: 1.8 Over time: 0.7 Interaction: 6.1 (5\% significance) Difficulty awakening Between groups: 0.2 Over time: 1.7 Interaction: 0.9 Refreshed at awakening Between groups: 1.1 Over time: 18.5 (0.1% significance) Interaction: 0.2	Moderate The article also provides data on sufficient sleep and sleep need (not included in the present report) * The author has not explicitely specified that the measurements are given as mean (SEM). This was assumed at tabulating data

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Åkerstedt et al 2010 [66] Sweden	Prospective cohort 5 years Working population $\begin{aligned} & 1996-1998 \\ & 2000-2003 \end{aligned}$	Participants from a Swedish database (WOLF) $\mathrm{n}=3637$ Study included both women and men, but explicit total numbers are not listed. Approximately 20% women	Shift work The work was classified in the following categories: remained working day, entering shift work, exiting shift work, entering night work, exiting night work and remained working night Shift work was assessed with one question developed by the authors	Several sleep outcomes Sleep parameters were assessed by using the Karolinska Sleep Questionnaire	Prediction of new cases and loss of cases with sleep/wake problems. Logistic regression analysis. OR ($95 \% \mathrm{Cl}$). Adjusted for gender, age, demands, control, socioeconomic group, education, heavy/light work and marital status Difficulties falling asleep New cases (day = 1) Entry night: 0.82 ($0.33 ; 2.00$) Night: 1.08 (0.72; 1.62) Entry shift: 1.73 (1.14; 2.63) Shift: 1.08 ($0.88 ; 1.32$) Loss of cases (shift $=1$) Exit shift: $2.82(1.78 ; 4.48)$ Loss of cases (night $=1$) Exit night: 1.91 (0.97; 3.74) Difficulties awakening New cases (day = 1) Entry night: 2.30 (1.00; 5.28) Night: 1.14 (0.72; 1.81) Entry shift: 0.92 (0.56; 1.51) Shift: 1.12 (0.89; 1.42) Loss of cases (shift $=1$) Exit shift: 1.40 ($0.88 ; 2.23$) Loss of cases (night $=1$) Exit night: 1.21 ($0.65 ; 2.22$) The results continues on the next page	-	Moderate The article also provides data on falling asleep at work (not included in the present report)

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Åkerstedt et al continued 2010 [66] Sweden					Repetitive awakenings New cases (day = 1) Entry night: 0.38 (0.13 ; 1.11) Night: 1.30 (0.87; 1.94) Entry shift: $0.89(0.59 ; 1.34)$ Shift: 0.98 ($0.80 ; 1.20$)		
					Loss of cases (shift $=1$) Exit shift: 1.77 (1.13; 2.78) Loss of cases (night $=1$) Exit night: 1.44 (0.75; 2.76)		
					Not rested New cases (day = 1) Entry night: 0.95 (0.41 ; 2.21) Night: 1.04 (0.70; 1.56) Entry shift: 1.28 (0.85 ; 1.94) Shift: 1.14 (0.93; 1.39)		
					Loss of cases (shift $=1$) Exit shift: 0.67 (0.37; 1.21)		
					Loss of cases (night $=1$) Exit night: $0.80(0.41 ; 1.59)$		

Table 11.1 continued

Author Year Reference Country	Design Time to follow-up Setting Performed (yrs)	Participants Women/men	Occupational factor(-s)	Outcome	Association between occupational factor and sleep; least adjusted model	Association between occupational factor and sleep; most adjusted model	Study quality Comments
Åkerstedt et al 2012 [49] Sweden	Prospective cohort 5 years Working population 1996-1998, 2000-2003	Participants were working and without any disabling disease. Participants were part of the WOLF cohort which is further described in other articles $n=3077$ 515 women and 2562 men	Psychosocial factors Demands were assessed by the demand-control model postulated by Karasek Control was assessed by a Swedish version of the Job Strain Questionnarie Work preoccupation (WP) was assessed by three questions from the work commitment scale of Siegrist et al	Disturbed sleep Sleep parameters were assessed by using the Karolinska Sleep Questionnaire	Multivariate logistic regression predicting new cases of disturbed sleep unadjusted model. Baseline disturbed sleep excluded. OR (95\% CI) Predicting new cases from situation at baseline Low work demands: 1 High work demands: 1.48 (1.19; 1.83) Low WP: 1 High WP: 1.54 (1.27; 1.88) High control: 1 Low control: 1.10 (0.89; 1.35) Predicting new cases from development I parameters Consistent low demands: 1 Increased demands: 1.56 (1.17; 2.07) Consistent high demands: 1.87 (1.43; 2.44) Decreased demands: 1.36 (0.99; 1.87) Consistent low WP: 1 Increased WP: 1.89 (1.58; 2.26) Consistent high WP: $3.40(2.33 ; 4.95)$ Decreased WP: 0.71 ($0.51 ; 1.00$) Consistent high control: 1 Increased control: 1.03 (0.73; 1.44) Consistent low control: 1.12 (0.87; 1.44) Decreased control: 1.29 (0.92; 1.81)	Multivariate logistic regression predicting new cases of disturbed sleep - model adjusted for covariates at first and second measurement and two other predictors. OR (95\% CI) Covariates: gender, age, demands, work preoccupation, control, shift work, socioeconomic group, education, heavy work, marital status, childbearing, physical activity Predicting new cases from situation at baseline Low work demands: 1 High work demands: 1.47 (1.15; 1.89) Low WP: 1 High WP: 1.55 (1.23; 1.96) High control: 1 Low control: 0.98 (0.77; 1.25) Predicting new cases from development I parameters Consistent low demands: 1 Increased demands: 1.39 (1.00; 1.95) Consistent high demands: 1.49 (1.06; 2.11) Decreased demands: 1.24 ($0.85 ; 1.80$) Consistent low WP: 1 Increased WP: 2.47 (1.78; 3.43) Consistent high WP: 3.79 (2.70; 5.31) Decreased WP: 0.65 ($0.45 ; 0.95$) Consistent high control: 1 Increased control: 1.22 ($0.82 ; 1.82$) Consistent low control: 1.09 (0.79; 1.51) Decreased control: 0.98 ($0.68 ; 1.41$)	Moderate

BMI = Body mass index; $\mathrm{CI}=$ Confidence interval; $\mathrm{OR}=$ Odds ratio; $\mathrm{SD}=$ Standard deviation;
SE = Standard error; SEM = Standard error of the mean

